2012年8月13日 讯 /生物谷BIOON/ --在一项新研究中,美国圣裘德儿童研究医院(St. Jude Children's Research Hospital)研究人员发现与一种罕见的血管疾病相关联的一个缺陷基因让他们发现一种参与决定细胞内大概上千种蛋白的命运的机制。这一发现有助于人们深入认识体内最为重要的调节系统之一的泛素系统。细胞利用泛素系统除去不需要的蛋白。这种系统发生问题与癌症、感染和其他疾病相关联。这项研究近期在线发表在Molecular Cell期刊上。
研究人员证实一种被称作肾小球蛋白(Glomulin)的蛋白如何结合到这种调节系统中的一个关键性组分。他们不仅证实肾小球蛋白的结合位置,而且也证实这种结合如何关闭一个生化级联反应:这种级联反应对不需要的蛋白进行标记以便将它们移除。
在这项研究中,研究人员发现肾小球蛋白结合到cullin-RING泛素连接酶(cullin RING ligase)的位点上并将这种位点遮盖住,从而破坏泛素化,其中cullin-RING泛素连接酶完成泛素标记过程。肾小球蛋白的结合位点位于 RBX1蛋白上,其中RBX1蛋白是cullin-RING泛素连接酶中的一个组分。
在早期的研究中,研究员James DeCaprio和他的同事们报道,肾小球蛋白通过结合到RBX1蛋白上来调节cullin-RING泛素连接酶。他们还报道肾小球蛋白并没有结合到与RBX1蛋白相关的RBX2蛋白上。
在这项最新研究中,圣裘德儿童研究医院研究人员利用X射线晶体学来确定出参与肾小球蛋白与RBX1蛋白和cullin-RING泛素连接酶中的另一种组分相互作用的结构。
随后的测试也表明肾小球蛋白紧密地结合到RBX1蛋白的表面上。这种结合阻止携带泛素标签的cullin-RING泛素连接酶运送泛素。这种结构也提示着与球形细胞静脉畸形(glomuvenous malformation)相关联的肾小球蛋白突变如何阻止这种蛋白结合到RBX1蛋白上。
携带泛素蛋白的cullin-RING泛素连接酶必须结合到RBX1蛋白上来完成泛素化过程。研究人员发现肾小球蛋白结合到cullin-RING泛素连接酶结合到RBX1蛋白上的相同位点上,从而破坏泛素化。
论文第一作者David Duda博士说,“RBX1蛋白潜在地调节着细胞内上千个不同蛋白。肾小球蛋白代表着一种调节这类RBX1相关性蛋白的新方式。”(生物谷:Bioon.com)
本文编译自New regulatory mechanism discovered in cell system for eliminating unneeded proteins
doi: 10.1016/j.molcel.2012.05.044
PMC:
PMID:
Structure of a Glomulin-RBX1-CUL1 Complex: Inhibition of a RING E3 Ligase through Masking of Its E2-Binding Surface
David M. Duda, Jennifer L. Olszewski, Adriana E. Tron, Michal Hammel, Lester J. Lambert, M. Brett Waddell, Tanja Mittag, James A. DeCaprio, Brenda A. Schulman
The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition