2012年10月9日 讯 /生物谷BIOON/ --在一项新的研究中,来自美国Iowa State University的Ying Wang和Jeffrey Essner利用一种被称作转录激活子样效应物核酸酶(transcription activator-like effector nucleases, TALENs)的定点分子剪刀在对斑马鱼进行基因编辑中取得突破,从而有助于科学家们在活的有机体中进行位点特异性的突变和基因编辑。相关研究结果于2012年发表在Nature期刊上,论文标题为“In vivo genome editing using high-efficiency TALEN systems”。论文通信作者是分子生物学家Stephen Ekker。
通过这种TALENs系统,研究人员首次能够切掉斑马的部分DNA,并插入人工制造的替代DNA序列。这就允许研究人员去激活和可能激活靶基因,这可能有助于科学家们研究早期胚胎发育和成年生活的遗传特征。Ying Wang说,这些创新性发现可能在农业和人类疾病中有着极大的应用。
Wang说,“这项研究在很多方面都带来深刻的影响。它可能导致农作物和生产性动物更加有效地抵抗疾病,而且它有潜力让人们对人类遗传特征和人类疾病产生新的认识。”
Jeffrey Essner说,在遗传组成上,斑马鱼与人类拥有几乎90%的相同性,因此研究它们的发育能够有助于认识人类疾病。在早期的胚胎发育阶段,这尤其如此。
Essner说,“大多数癌症是因为基因随着时间的推移而发生的零星突变导致的。在这项研究中,我们所做的就是让人们可能能够操纵这些基因,甚至在成人体内也能如此。”
激活斑马鱼基因的能力可能导致人们在治疗癌症以及人类与动物的一系列其他疾病方面取得突破。
在这项研究中,研究人员能够更加有效地利用TALENs技术和准确地进行基因编辑。在此之前,Adam Bogdanove教授与Dan Voytas教授、Bing Yang助理教授和Martin Spalding教授在TALENs技术上作出了巨大的基础性研究工作。
从那时起,人们就一直利用TALENs技术来操纵细菌的遗传机制,但是Essner说,他们是首次利用TALENs在体内进行基因编辑,即在活的有机体体内进行操作。
Essner说,他们想进一步开展研究以便继续优化和完善这种基因编辑技术。(生物谷Bioon.com)
doi: 10.1038/nature11537
PMC:
PMID:
In vivo genome editing using a high-efficiency TALEN system
Victoria M. Bedell, Ying Wang, Jarryd M. Campbell, Tanya L. Poshusta, Colby G. Starker, Randall G. Krug II, Wenfang Tan, Sumedha G. Penheiter, Alvin C. Ma, Anskar Y. H. Leung, Scott C. Fahrenkrug, Daniel F. Carlson, Daniel F. Voytas, Karl J. Clark, Jeffrey J. Essner & Stephen C. Ekker
The zebrafish (Danio rerio) is increasingly being used to study basic vertebrate biology and human disease with a rich array of in vivo genetic and molecular tools. However, the inability to readily modify the genome in a targeted fashion has been a bottleneck in the field. Here we show that improvements in artificial transcription activator-like effector nucleases (TALENs) provide a powerful new approach for targeted zebrafish genome editing and functional genomic applications. Using the GoldyTALEN modified scaffold and zebrafish delivery system, we show that this enhanced TALEN toolkit has a high efficiency in inducing locus-specific DNA breaks in somatic and germline tissues. At some loci, this efficacy approaches 100%, including biallelic conversion in somatic tissues that mimics phenotypes seen using morpholino-based targeted gene knockdowns6. With this updated TALEN system, we successfully used single-stranded DNA oligonucleotides to precisely modify sequences at predefined locations in the zebrafish genome through homology-directed repair, including the introduction of a custom-designed EcoRV site and a modified loxP (mloxP) sequence into somatic tissue in vivo. We further show successful germline transmission of both EcoRV and mloxP engineered chromosomes. This combined approach offers the potential to model genetic variation as well as to generate targeted conditional alleles.