2012年10月12日 讯 /生物谷BIOON/ --近日,刊登在国际著名杂志PNAS上的一篇研究报告中,来自麦吉尔大学的研究者揭示了人类大脑DNA和动物大脑DNA在对早期生命多样性反应上出现的惊人的相似性,这也就表明,对早期生命多样性的进化保守机制效应可以影响基因组中的一系列基因,文章强调了儿童期社会环境的重要性,并且也揭示了儿童逆境对于DNA的影响是可程序化的。
在这项研究中,研究者检测了滥用药物儿童和对照组儿童大脑海马体区域甲基化DNA的差异性,DNA甲基化的和其早期经历直接相关。人类的早期生活经历,尤其是社会经验,可以对未来其身心健康产生深远的影响。目前,研究者并不知道这些早期的逆境或经历是如何在生物学上影响机体的发育的。
此前的研究揭示了早期生活经历可以对个体的健康产生深远的影响,也就是说引起健康影响的一系列基因在早期生活经历中都已经被不断修饰过了。
这项研究揭示了,将社会经验嵌合入大脑DNA中可以影响不仅仅一些基因,而是影响整个基因组网络的基因。研究者Syzf说,我们的研究揭示了儿童期社会环境对机体健康的重要性,如今通过我们的研究就可以理解如何预防并且治疗个体的身心疾病。(生物谷Bioon.com)
编译自:Evidence of biological process that embeds social experience in DNA that affects entire networks of genes
doi:10.1073/pnas.1121260109
PMC:
PMID:
Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus
Matthew Sudermana,b,c,1, Patrick O. McGowand,1, Aya Sasakid,1, Tony C. T. Huangb, Michael T. Hallettc, Michael J. Meaneya,e,f,g, Gustavo Tureckie, and Moshe Szyfa,b,g,2
Early life experience is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. However, it is unlikely that such effects completely capture the evolutionarily conserved epigenetic mechanisms of early adaptation to environment. Here we present DNA methylation profiles spanning 6.5 million base pairs centered at the NR3C1 gene in the hippocampus of humans who experienced abuse as children and nonabused controls. We compare these profiles to corresponding DNA methylation profiles in rats that received differential levels of maternal care. The profiles of both species reveal hundreds of DNA methylation differences associated with early life experience distributed across the entire region in nonrandom patterns. For instance, methylation differences tend to cluster by genomic location, forming clusters covering as many as 1 million bases. Even more surprisingly, these differences seem to specifically target regulatory regions such as gene promoters, particularly those of the protocadherin α, β, and γ gene families. Beyond these high-level similarities, more detailed analyses reveal methylation differences likely stemming from the significant biological and environmental differences between species. These results provide support for an analogous cross-species epigenetic regulatory response at the level of the genomic region to early life experience.