几乎没有科学家相信恐龙的脱氧核糖核酸(DNA)样本能够存留至今,但也没有人知道这些遗传物质到底要用多久才会散架。如今,对新西兰出土的化石进行的一项研究终于让这桩悬案尘埃落定,顺便终结了克隆霸王龙的美梦。这项研究成果发表在10月9日的英国《皇家学会学报B卷》上。
在细胞死亡后,酶开始分解作为DNA支柱的核苷酸之间的化学键,并且微生物也在加速细胞的腐烂。然而,从长远来看,与水的反应被认为是造成化学键分解的最主要原因。地下水几乎是无所不在的,因而从理论上讲,埋藏的骨骼样本中的DNA会按照一个固定的速度分解。
然而确定这一速度是非常困难的,这是因为很少能够找到含有大量DNA的化石来作出有意义的比较。并且更糟糕的是,变化的环境条件,例如温度、微生物侵入的程度和氧化作用会改变腐解过程的速度。
日前由丹麦哥本哈根大学的Morten Allentoft和澳大利亚佩斯市默多克大学的Michael Bunce率领的古遗传学家研究小组,对属于3种已经灭绝的古代巨鸟(恐鸟)的含有DNA的158根腿骨化石进行了研究。
这些骨骼的年代介于600年到8000年之间,并被发现于彼此距离不超过5公里的3个地方,从而保证了它们差不多是以相同的条件保存的,包括温度为13.1摄氏度。
通过比较样本的年代以及DNA分解的程度,研究人员推算出DNA的半衰期为521年。这也就意味着,在521年后,一个样本中的核苷酸骨架之间的化学键有一半会被分解掉,而在下一个521年后,剩下的一半化学键也将消失殆尽。
研究小组还预测了如果一根骨骼保存在理想温度(-5摄氏度)下,每根化学键被毁的最长时间为680万年。但其实DNA在很早之前便已经无法读取了——大约在150万年后,剩下的DNA链便因为太短而无法传递有意义的信息。
澳大利亚悉尼大学的计算进化生物学家Simon Ho表示:“这证明了一个广泛存在的质疑,即宣称从恐龙和被封存在琥珀中的古昆虫中提取DNA是不现实的。”然而,Ho说,尽管680万年远不及恐龙骨骼的年龄——后者至少有6500万年——“但我们或许能够打破最古老的真正DNA序列的纪录,当前的纪录约为50万年”。
这项最新研究中的计算很简单,但仍有许多问题。
新西兰丹尼丁市奥塔哥大学的古遗传学家Michael Knapp表示:“我非常想看看这项发现能否在非常不同的环境中——例如永久冻土和洞穴——重现。”
此外,研究人员还发现,在恐鸟骨骼的样本中,年龄的差异仅对DNA分解的变化产生了38.6%的影响。“显然有其他因素在影响着DNA的存留。”Bunce说,“化石发掘后的储存、土壤化学,甚至动物死亡的时间都是可能的影响因素,这需要进一步的调查。”(生物谷Bioon.com)
doi:10.1098/rspb.2012.1745
PMC:
PMID:
The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils
Morten E. Allentoft, Matthew Collins, David Harker, James Haile, Charlotte L. Oskam, Marie L. Hale, Paula F. Campos, Jose A. Samaniego, M. Thomas P. Gilbert, Eske Willerslev, Guojie Zhang, R. Paul Scofield, Richard N. Holdaway, and Michael Bunce
Claims of extreme survival of DNA have emphasized the need for reliable models of DNA degradation through time. By analysing mitochondrial DNA (mtDNA) from 158 radiocarbon-dated bones of the extinct New Zealand moa, we confirm empirically a long-hypothesized exponential decay relationship. The average DNA half-life within this geographically constrained fossil assemblage was estimated to be 521 years for a 242 bp mtDNA sequence, corresponding to a per nucleotide fragmentation rate (k) of 5.50 × 10–6 per year. With an effective burial temperature of 13.1°C, the rate is almost 400 times slower than predicted from published kinetic data of in vitro DNA depurination at pH 5. Although best described by an exponential model (R2 = 0.39), considerable sample-to-sample variance in DNA preservation could not be accounted for by geologic age. This variation likely derives from differences in taphonomy and bone diagenesis, which have confounded previous, less spatially constrained attempts to study DNA decay kinetics. Lastly, by calculating DNA fragmentation rates on Illumina HiSeq data, we show that nuclear DNA has degraded at least twice as fast as mtDNA. These results provide a baseline for predicting long-term DNA survival in bone.