据物理学家组织网近日报道,来自美国密歇根大学的科研团队发现了迄今最小、最快的RNA分子开关,这种稀有的、转瞬即逝的结构可提供新的药物靶标,为开发新型抗病毒药物以及抗生素药物提供重大帮助。相关研究报告发表在同日的《自然》杂志上。
RNA是DNA的“化学表亲”,其一度被认为只能存储和传递遗传信息。而现在,RNA被称为细胞内的“瑞士军刀”,其可以执行各种各样的任务,并变化成多种形状。在过去的十年中,研究人员已经确定我们细胞中的大多数RNA分子,RNA也在调节基因表达方面发挥着重要作用。这些大分子作为开关可探测到细胞信号,并能改变形状或是发送适当的反应给细胞中的其他生物分子。
研究小组采用了改良过的核磁共振光谱仪,以及囚禁和捕获瞬时RNA结构的策略。此前他们借助相似的核磁共振技术制成过“纳米视频”,能够以三维模式揭示RNA分子如何改变形状,形成扭曲、弯曲和旋转的结构节点。此次观测到的RNA开关可比同类开关的体积显著减小,运行速度也将呈数量级提升。研究人员把这种寿命很短的结构称为微控开关,其可通过一种新的成像技术被探测到。虽然这种RNA开关存在的证据与日增多,但由于其体形极小且寿命极短,因而传统的成像技术一直未能捕捉到它的踪迹。该校化学系和生物物理学系的哈希姆·哈希米就表示:“我们终于观察到了这些罕有的、交替形式的RNA,它们只能存在大约1微秒至1毫秒左右,转瞬即逝。”观察到的瞬间结构变化涉及3种类型的RNA分子。其中两种RNA源自艾滋病病毒,另一种则与核糖体内部的质量控制相关。
微控开关内涉及了暂时的、局部的RNA结构变化,直至受激状态。这种结构的变化就是开关:形状的变化能够传输生物信号到细胞的其他部分。上述的激发态相当于具有生物功能的罕见的交替形式。这些交替形式具有独特的化学特性,能使它们成为药物可附着的大分子。从某种意义上说,他们提供了全新的药物靶标层。抗病毒的药物能够破坏艾滋病病毒的复制,而抗生素药物能够干扰蛋白质在细菌核糖体内的装配。(生物谷Bioon.com)
doi:10.1038/nature11498
PMC:
PMID:
Visualizing transient low-populated structures of RNA
Elizabeth A. Dethoff, Katja Petzold, Jeetender Chugh, Anette Casiano-Negroni & Hashim M. Al-Hashimi
The visualization of RNA conformational changes has provided fundamental insights into how regulatory RNAs carry out their biological functions. The RNA structural transitions that have been characterized so far involve long-lived species that can be captured by structure characterization techniques. Here we report the nuclear magnetic resonance visualization of RNA transitions towards ‘invisible’ excited states (ESs), which exist in too little abundance (2–13%) and for too short a duration (45–250?μs) to allow structural characterization by conventional techniques. Transitions towards ESs result in localized rearrangements in base-pairing that alter building block elements of RNA architecture, including helix–junction–helix motifs and apical loops. The ES can inhibit function by sequestering residues involved in recognition and signalling or promote ATP-independent strand exchange. Thus, RNAs do not adopt a single conformation, but rather exist in rapid equilibrium with alternative ESs, which can be stabilized by cellular cues to affect functional outcomes.