2012年10月19日 讯 /生物谷BIOON/ --来自美国几所大学的研究人员证实在实验室中断裂的RNA片段能够相互协作来自我重新组装。这种发现提示着早期生命开始于RNA分子之间的协作,从而最终导致合作性复制。
这项研究基于化学家Manfred Eigen提出的数学理论。他认为早期的RNA不能从短链分子成功地进化出来,因此它们必须需要帮助。他说,这种帮助可能来自于这些分子之间的协作。
在较早前的研究中,论文通讯作者Niles Lehman就已发现被称作核酶(ribozyme)的长链RNA分子被切割成片段后,将它们在盘碟上放置在一起,经过一段之后,它们自我重组装为它们的原始构造。在这项新的研究中,Lehman和同事们改变了3种核酶样品以致于它们除了一种碱基不同之外都是一样的。每种核酶被切割成片段,然后被在放置盘碟中。研究人员发现相对于这些核酶单独被放置在盘碟上时,当它们在盘碟上被放置在一起时,他们进行自我重组装的速度更快。他们报道,这是因为在它们当中的一种核酶帮助第二种核酶重新组装,接着第二种核酶帮助第三种核酶重新组装,而第三种核酶反过来帮助第一种核酶重新组装,从而形成一种封闭循环的网络。
为了观察同样的结果在一种更加混乱的环境中是否也是可能的,研究人员将48种被切割成片段的核酶与上百万个其他的RNA分子一起放置在试管中,并发现这些原始的48种核酶能够找到它们其他的片段,并且相互帮助彼此进行重组装,同时再次要比它们当中的任何一种核酶单独放置时的更加快速。
研究人员提示着在地球的原始汤(primordial soup)中,短RNA分子之间存在的类似协作可能允许它们进行复制,同时避免它们进行复制时可能产生的合成错误,这是因为数学模型提示着这样的错误将导致进化死亡(evolutionary death)。这种协作将允许它们进化为更长的更复杂的RNA分子并最终进化为今天存在的所有其他分子。(生物谷Bioon.com)
doi: 10.1038/nature11549
PMC:
PMID:
Spontaneous network formation among cooperative RNA replicators
Nilesh Vaidya, Michael L. Manapat, Irene A. Chen, Ramon Xulvi-Brunet, Eric J. Hayden & Niles Lehman
The origins of life on Earth required the establishment of self-replicating chemical systems capable of maintaining and evolving biological information. In an RNA world, single self-replicating RNAs would have faced the extreme challenge of possessing a mutation rate low enough both to sustain their own information and to compete successfully against molecular parasites with limited evolvability. Thus theoretical analyses suggest that networks of interacting molecules were more likely to develop and sustain life-like behaviour. Here we show that mixtures of RNA fragments that self-assemble into self-replicating ribozymes spontaneously form cooperative catalytic cycles and networks. We find that a specific three-membered network has highly cooperative growth dynamics. When such cooperative networks are competed directly against selfish autocatalytic cycles, the former grow faster, indicating an intrinsic ability of RNA populations to evolve greater complexity through cooperation. We can observe the evolvability of networks through in vitro selection. Our experiments highlight the advantages of cooperative behaviour even at the molecular stages of nascent life..